
python-rtmixer
Release 0.1.4-4-g003c7b5

Matthias Geier

2023-09-03

Contents

1 Features 2
1.1 Planned Features . 2
1.2 Out Of Scope . 2

2 Installation 3

3 Usage 3

4 API Documentation 3

5 Contributing 8
5.1 Development Installation . 8
5.2 Building the Documentation . 8
5.3 Creating a New Release . 9

6 Version History 9

Python Module Index 10

Warning: This is work in progress!

Goal: Reliable low-latency audio playback and recording with Python, using PortAudio via the sounddevice mod-
ule.

The audio callback is implemented in C (and compiled with the help of CFFI) and doesn’t invoke the Python
interpreter, therefore avoiding waiting for things like garbage collection and the GIL.

All PortAudio platforms and host APIs are supported. Runs on any Python version where CFFI is available.

Online documentation
https://python-rtmixer.readthedocs.io/

Source code repository
https://github.com/spatialaudio/python-rtmixer

Somewhat similar projects

• https://github.com/nwhitehead/swmixer

• https://github.com/nvahalik/PyAudioMixer

1

http://portaudio.com/
https://python-sounddevice.readthedocs.io/
https://cffi.readthedocs.io/
https://python-rtmixer.readthedocs.io/
https://github.com/spatialaudio/python-rtmixer
https://github.com/nwhitehead/swmixer
https://github.com/nvahalik/PyAudioMixer

• http://www.pygame.org/docs/ref/mixer.html

1 Features

• playback of multiple signals at the same time (that’s why it’s called “mixer”)

• play from buffer, play from ringbuffer

• record into buffer, record into ringbuffer

• multichannel support

• NumPy arrays with data type 'float32' can be easily used (via the buffer protocol) as long as they are
C-contiguous

• fixed latency playback, (close to) no jitter (optional)

– to be verified . . .

• sample-accurate playback/recording (with known offset)

– to be verified . . .

• non-blocking callback function, using PortAudio ringbuffers

• all memory allocations/deallocations happen outside the audio callback

1.1 Planned Features

• meticulous reporting of overruns/underruns

• loopback tests to verify correct operation and accurate latency values

• fade in/out?

• loop?

• playlist/queue?

1.2 Out Of Scope

• reading from/writing to files (use e.g. the soundfile module instead)

• realtime signal processing inside the audio callback (ring buffers can be used as a work-around, see the
signal_processing.py example)

• signal generators

• multiple mixer instances (some PortAudio host APIs only support one stream at a time)

• resampling (apart from what PortAudio does)

• fast forward/rewind

• panning/balance

• audio/video synchronization

2

http://www.pygame.org/docs/ref/mixer.html
https://python-soundfile.readthedocs.io/
https://github.com/spatialaudio/python-rtmixer/blob/master/examples/signal_processing.py

2 Installation

On Windows, macOS and Linux you can install a precompiled “wheel” package with:

python3 -m pip install rtmixer

This will install rtmixer and its dependencies, including sounddevice.

Depending on your Python installation, you may have to use python instead of python3. If you have installed the
module already, you can use the --upgrade flag to get the newest release.

Note: On Linux, to use sounddevice and rtmixer you will need to have PortAudio installed, e.g. via sudo
apt install libportaudio2. On other platforms, PortAudio comes bundled with sounddevice.

3 Usage

See the list of examples on GitHub.

4 API Documentation

Mixer PortAudio output stream for realtime mixing.
Recorder PortAudio input stream for realtime recording.
MixerAndRecorder PortAudio stream for realtime mixing and recording.
RingBuffer PortAudio's single-reader single-writer lock-free ring

buffer.

Common parameters that are shared by most commands:

start
Desired time at which the playback/recording should be started. The actual time will be stored in the
actual_time field of the returned action.

time
Desired time at which the command should be executed. The actual time will be stored in the actual_time
field of the returned action.

channels
This can be either the desired number of channels or a list of (1-based) channel numbers that is used as a
channel map for playback/recording.

allow_belated
Use False to cancel the command in case the requested time cannot be met. The actual_time field will
be set to 0.0 in this case. Use True to execute the command nevertheless. Even if the requested time was
met, the actual_time might be slightly different due to rounding to the next audio sample.

All commands return a corresponding “action”, which can be compared against the active actions, and can be
used as input for cancel() and wait(). The fields of action objects are defined in C but can be accessed with
Python (e.g. my_action.stats.min_blocksize) after the command is finished:

struct action
{
const enum actiontype type;
const PaTime requested_time;
PaTime actual_time; // Set != 0.0 to allow belated actions

(continues on next page)

3

https://github.com/spatialaudio/python-rtmixer/tree/master/examples

(continued from previous page)

struct action* next; // Used to create singly linked list of actions
union {
float* const buffer;
struct PaUtilRingBuffer* const ringbuffer;
struct action* const action; // Used in CANCEL

};
frame_t total_frames;
frame_t done_frames;
struct stats stats;
// TODO: ringbuffer usage: store smallest available write/read size?
const frame_t channels; // Size of the following array
const frame_t mapping[]; // "flexible array member"

};

The stats field contains some statistics collected during playback/recording (again, after the command is fin-
ished):

struct stats
{
frame_t blocks;
frame_t min_blocksize;
frame_t max_blocksize;
frame_t input_underflows;
frame_t input_overflows;
frame_t output_underflows;
frame_t output_overflows;

};

These statistics are also collected for the whole runtime of a stream, where they are available as stats attribute
(but only if the stream is inactive). The statistics of an active stream can be obtained (and at the same time reset)
with fetch_and_reset_stats().

class rtmixer.Mixer(**kwargs)
PortAudio output stream for realtime mixing.

Takes the same keyword arguments as sounddevice.OutputStream, except callback (a callback function
implemented in C is used internally) and dtype (which is always 'float32').

Uses default values from sounddevice.default (except dtype, which is always 'float32').

Has the same methods and attributes as sounddevice.OutputStream (except write() and
write_available), plus the following:

property actions

The set of active “actions”.

cancel(action, time=0, allow_belated=True)
Initiate stopping a running action.

This creates another action that is sent to the callback in order to stop the given action.

This function typically returns before the action is actually stopped. Use wait() (on either one of the
two actions) to wait until it’s done.

fetch_and_reset_stats(time=0, allow_belated=True)
Fetch and reset over-/underflow statistics of the stream.

The statistics will be available in the stats field of the returned action.

play_buffer(buffer, channels, start=0, allow_belated=True)
Send a buffer to the callback to be played back.

4

https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.OutputStream
https://python-sounddevice.readthedocs.io/en/0.4.6/api/module-defaults.html#sounddevice.default
https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.OutputStream
https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.Stream.write
https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.Stream.write_available

After calling this, the buffer must not be written to anymore.

play_ringbuffer(ringbuffer, channels=None, start=0, allow_belated=True)
Send a RingBuffer to the callback to be played back.

By default, the number of channels is obtained from the ring buffer’s elementsize.

property stats

Get over-/underflow statistics from an inactive stream.

To get statistics from an active stream, use fetch_and_reset_stats().

wait(action=None, sleeptime=10)
Wait for action to be finished.

Between repeatedly checking if the action is finished, this waits for sleeptime milliseconds.

If no action is given, this waits for all actions.

class rtmixer.Recorder(**kwargs)
PortAudio input stream for realtime recording.

Takes the same keyword arguments as sounddevice.InputStream, except callback (a callback function
implemented in C is used internally) and dtype (which is always 'float32').

Uses default values from sounddevice.default (except dtype, which is always 'float32').

Has the same methods and attributes as Mixer, except that play_buffer() and play_ringbuffer() are
replaced by:

record_buffer(buffer, channels, start=0, allow_belated=True)
Send a buffer to the callback to be recorded into.

record_ringbuffer(ringbuffer, channels=None, start=0, allow_belated=True)
Send a RingBuffer to the callback to be recorded into.

By default, the number of channels is obtained from the ring buffer’s elementsize.

class rtmixer.MixerAndRecorder(**kwargs)
PortAudio stream for realtime mixing and recording.

Takes the same keyword arguments as sounddevice.Stream, except callback (a callback function imple-
mented in C is used internally) and dtype (which is always 'float32').

Uses default values from sounddevice.default (except dtype, which is always 'float32').

Inherits all methods and attributes from Mixer and Recorder.

class rtmixer.RingBuffer(elementsize, size=None, buffer=None)
PortAudio’s single-reader single-writer lock-free ring buffer.

C API documentation:
http://portaudio.com/docs/v19-doxydocs-dev/pa__ringbuffer_8h.html

Python wrapper:
https://github.com/spatialaudio/python-pa-ringbuffer

Instances of this class can be used to transport data between Python code and some compiled code running
on a different thread.

This only works when there is a single reader and a single writer (i.e. one thread or callback writes to the
ring buffer, another thread or callback reads from it).

This ring buffer is not appropriate for passing data from one Python thread to another Python thread. For
this, the queue.Queue class from the standard library can be used.

Parameters

• elementsize (int) – The size of a single data element in bytes.

5

https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.Stream.active
https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.InputStream
https://python-sounddevice.readthedocs.io/en/0.4.6/api/module-defaults.html#sounddevice.default
https://python-sounddevice.readthedocs.io/en/0.4.6/api/streams.html#sounddevice.Stream
https://python-sounddevice.readthedocs.io/en/0.4.6/api/module-defaults.html#sounddevice.default
http://portaudio.com/docs/v19-doxydocs-dev/pa__ringbuffer_8h.html
https://github.com/spatialaudio/python-pa-ringbuffer
https://docs.python.org/3/library/queue.html#queue.Queue
https://docs.python.org/3/library/functions.html#int

• size (int) – The number of elements in the buffer (must be a power of 2). Can be
omitted if a pre-allocated buffer is passed.

• buffer (buffer) – optional pre-allocated buffer to use with RingBuffer. Note that if you
pass a read-only buffer object, you still get a writable RingBuffer; it is your responsibility
not to write there if the original buffer doesn’t expect you to.

advance_read_index(size)
Advance the read index to the next location to be read.

Parameters
size (int) – The number of elements to advance.

Returns
The new position.

Note: This is only needed when using get_read_buffers(), the methods read() and readinto()
take care of this by themselves!

advance_write_index(size)
Advance the write index to the next location to be written.

Parameters
size (int) – The number of elements to advance.

Returns
The new position.

Note: This is only needed when using get_write_buffers(), the method write() takes care of
this by itself!

property elementsize

Element size in bytes.

flush()

Reset buffer to empty.

Should only be called when buffer is not being read or written.

get_read_buffers(size)
Get buffer(s) from which we can read data.

When done reading, use advance_read_index() to make the memory available for writing again.

Parameters
size (int) – The number of elements desired.

Returns

• The number of elements available for reading (which might be less than the requested
size).

• The first buffer.

• The second buffer.

Return type
tuple (int, buffer, buffer)

get_write_buffers(size)
Get buffer(s) to which we can write data.

When done writing, use advance_write_index() to make the written data available for reading.

6

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int

Parameters
size (int) – The number of elements desired.

Returns

• The room available to be written or the given size, whichever is smaller.

• The first buffer.

• The second buffer.

Return type
tuple (int, buffer, buffer)

read(size=-1)
Read data from the ring buffer into a new buffer.

This advances the read index after reading; calling advance_read_index() is not necessary.

Parameters
size (int, optional) – The number of elements to be read. If not specified, all avail-
able elements are read.

Returns
A new buffer containing the read data. Its size may be less than the requested size.

property read_available

Number of elements available in the ring buffer for reading.

readinto(data)
Read data from the ring buffer into a user-provided buffer.

This advances the read index after reading; calling advance_read_index() is not necessary.

Parameters
data (CData pointer or buffer) – The memory where the data should be stored.

Returns
The number of elements read, which may be less than the size of data.

write(data, size=-1)
Write data to the ring buffer.

This advances the write index after writing; calling advance_write_index() is not necessary.

Parameters

• data (CData pointer or buffer or bytes) – Data to write to the buffer.

• size (int, optional) – The number of elements to be written.

Returns
The number of elements written.

property write_available

Number of elements available in the ring buffer for writing.

7

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#int

5 Contributing

If you find bugs, errors, omissions or other things that need improvement, please create an issue or a pull request
at https://github.com/spatialaudio/python-rtmixer/. Contributions are always welcome!

5.1 Development Installation

Instead of pip-installing the latest release from PyPI, you should get the newest development version (a.k.a. “mas-
ter”) with Git:

git clone https://github.com/spatialaudio/python-rtmixer.git --recursive
cd python-rtmixer
python3 -m pip install -e .

. . . where -e stands for --editable.

When installing this way, you can quickly try other Git branches (in this example the branch is called “another-
branch”):

git checkout another-branch

If you want to go back to the “master” branch, use:

git checkout master

To get the latest changes from Github, use:

git pull --ff-only

If you used the --recursive option when cloning, the portaudio submodule (which is needed for compiling
the module) will be checked out automatically. If not, you can get the submodule with:

git submodule update --init

5.2 Building the Documentation

If you make changes to the documentation, you should create the HTML pages locally using Sphinx and check if
they look OK.

Initially, you might need to install a few packages that are needed to build the documentation:

python3 -m pip install -r doc/requirements.txt

To (re-)build the HTML files, use:

python3 setup.py build_sphinx

The generated files will be available in the directory build/sphinx/html/.

8

https://github.com/spatialaudio/python-rtmixer/
https://pypi.org/project/rtmixer/

5.3 Creating a New Release

New releases are made using the following steps:

1. Bump version number in src/rtmixer.py

2. Update NEWS.rst

3. Commit those changes as “Release x.y.z”

4. Create an (annotated) tag with git tag -a x.y.z

5. Push the commit and the tag to Github

6. Wait 10 minutes for the PyPI packages to be automagically uploaded

7. On Github, add release notes containing a link to PyPI and the bullet points from NEWS.rst

8. Check that the new release was built correctly on RTD and select the new release as default version

6 Version History

Version 0.1.3 – 2021-05-05 – PyPI – diff

• Add Python 3.9 support by adding entries to azure-pipelines.yml for cibuildwheel

Version 0.1.2 – 2020-08-20 – PyPI – diff

• Clean up cibuildwheel

Version 0.1.1 – 2020-06-19 – PyPI – diff

• Add Python 3.8 support by adding entries to azure-pipelines.yml for cibuildwheel

Version 0.1.0 – 2019-09-05 – PyPI
Initial release

9

https://github.com/spatialaudio/python-rtmixer/tags
https://readthedocs.org/projects/python-rtmixer/builds/
https://pypi.org/project/rtmixer/0.1.3/
https://github.com/spatialaudio/python-rtmixer/compare/0.1.2...0.1.3
https://pypi.org/project/rtmixer/0.1.2/
https://github.com/spatialaudio/python-rtmixer/compare/0.1.1...0.1.2
https://pypi.org/project/rtmixer/0.1.1/
https://github.com/spatialaudio/python-rtmixer/compare/0.1.0...0.1.1
https://pypi.org/project/rtmixer/0.1.0/

Python Module Index
r
rtmixer, 3

10

	Features
	Planned Features
	Out Of Scope

	Installation
	Usage
	API Documentation
	Contributing
	Development Installation
	Building the Documentation
	Creating a New Release

	Version History
	Python Module Index

